Multiplex 5' nuclease quantitative real-time PCR for clinical diagnosis of malaria and species-level identification and epidemiologic evaluation of malaria-causing parasites, including Plasmodium knowlesi.
نویسندگان
چکیده
Molecular diagnosis of malaria offers many potential advantages over microscopy, including identification of malaria to the species level in an era with few experienced microscopists. We developed high-throughput multiplex 5' nuclease quantitative PCR (qPCR) assays, with the potential to support large studies, to specifically identify Plasmodium falciparum, P. vivax, P. ovale, P. malariae, and P. knowlesi. We compared qPCR to microscopy and confirmed discordant results with an alternative target PCR assay. The assays specifically detected 1 to 6 parasites/μl of blood. The clinical sensitivities (95% confidence intervals [CIs]) of the 4-plex assay to detect microscopically confirmed malaria were 95.8% (88.3 to 99.1%) for P. falciparum, 89.5% (75.2 to 97.1%) for P. vivax, 94.1% (71.3 to 99.9%) for P. ovale, and 100% (66.4 to 100%) for P. malariae. The specificities (95% CIs) were 98.6% (92.4 to 100%) for P. falciparum, 99% (84.8 to 100%) for P. vivax, 98.4% (94.4 to 99.8%) for P. ovale, and 99.3% (95.9 to 100%) for P. malariae. The clinical specificity for samples without malaria was 100%. The clinical sensitivity of the 5-plex assay for confirmed P. knowlesi malaria was 100% (95% CI, 69.2 to 100%), and the clinical specificity was 100% (95% CI, 87.2 to 100%). Coded retesting and testing with an alternative target PCR assay showed improved sensitivity and specificity of multiplex qPCR versus microscopy. Additionally, 91.7% (11/12) of the samples with uncertain species by microscopy were identified to the species level identically by both our multiplex qPCR assay and the alternative target PCR assay, including 9 P. falciparum infections. Multiplex qPCR can rapidly and simultaneously identify all 5 Plasmodium species known to cause malaria in humans, and it offers an alternative or adjunct to microscopy for clinical diagnosis as well as a needed high-throughput tool for research.
منابع مشابه
Molecular detection of Plasmodium knowlesi in a Dutch traveler by real-time PCR.
Plasmodium knowlesi infection with low parasitemia presents a diagnostic challenge, as rapid diagnostic tests are often negative and identification to the species level by microscopy is difficult. P. knowlesi malaria in a traveler is described, and real-time PCR is demonstrated to support fast and reliable diagnosis and identification to the species level.
متن کاملEvaluation of Microscopy Sensitivity, Specificity in Detection of P. falciparum and P. vivax, Using Monoplex real-time PCR, Gezira, Sudan
Background: Malaria is still account for 200 million cases annually. Microscopy is the gold standard technique for malaria parasites detection. PCR-based techniques can detect malaria infections with high sensitivity. The study aimed to evaluate the sensitivity of microscopy technique in the detection of P. falciparum and P. vivax, using monoplex real-time PCR, Gezira State, Central Sudan. Met...
متن کاملEvaluation of new multiplex PCR primers for the identification ofPlasmodium species found in Sabah, Malaysia.
BACKGROUND/AIM Malaria is a major public health problem, especially in the Southeast Asia region, caused by 5 species of Plasmodium (P. falciparum, P. vivax, P. malariae, P. ovale, and P. knowlesi). The aim of this study was to compare parasite species identification methods using the new multiplex polymerase chain reaction (PCR) against nested PCR and microscopy. MATERIALS AND METHODS Blood ...
متن کاملClinical Pharmacology of the Antimalarial Chloroquine in Children and Their Mothers
Plasmodium falciparum, Plasmodium vivax, Plasmodium ovale, Plasmodium malariae, and Plasmodium knowlesi are the parasites that infect humans. Plasmodium falciparum and Plasmodium vivax cause most of the malarial infections worldwide. Plasmodium vivax, Plasmodium ovale, Plasmodium malariae, and Plasmodium knowlesi are susceptible to chloroquine. Chloroquine was the world's most widely used antim...
متن کاملA novel PCR-based system for the detection of four species of human malaria parasites and Plasmodium knowlesi
A microscopy-based diagnosis is the gold standard for the detection and identification of malaria parasites in a patient's blood. However, the detection of cases involving a low number of parasites and the differentiation of species sometimes requires a skilled microscopist. Although PCR-based diagnostic methods are already known to be very powerful tools, the time required to apply such method...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of clinical microbiology
دوره 51 9 شماره
صفحات -
تاریخ انتشار 2013